人工智能的最新趋势是将验证的模型用于语言和视觉任务,这些模型已经实现了非凡的表现,但也令人困惑。因此,以各种方式探索这些模型的能力对该领域至关重要。在本文中,我们探讨了模型的可靠性,在其中我们将可靠的模型定义为一个不仅可以实现强大的预测性能,而且在许多涉及不确定性(例如选择性预测,开放式设置识别)的决策任务上,在许多决策任务上表现出色,而且表现良好。强大的概括(例如,准确性和适当的评分规则,例如在分布数据集中和分发数据集上的对数可能性)和适应性(例如,主动学习,几乎没有射击不确定性)。我们设计了40个数据集的10种任务类型,以评估视觉和语言域上可靠性的不同方面。为了提高可靠性,我们分别开发了VIT-PLEX和T5-PLEX,分别针对视觉和语言方式扩展了大型模型。 PLEX极大地改善了跨可靠性任务的最先进,并简化了传统协议,因为它可以改善开箱即用的性能,并且不需要设计分数或为每个任务调整模型。我们演示了高达1B参数的模型尺寸的缩放效果,并预处理数据集大小最多4B示例。我们还展示了PLEX在具有挑战性的任务上的功能,包括零射门的开放式识别,主动学习和对话语言理解中的不确定性。
translated by 谷歌翻译
监督的学习数据集通常具有特权信息,以培训时间可用但在测试时间无法使用的功能形式,例如提供标签的注释者的ID。我们认为特权信息对于解释标签噪声很有用,从而减少了嘈杂标签的有害影响。我们开发了一种简单有效的方法,用于通过神经网络进行监督学习:它通过与特权信息共享知识的权重转移,并在测试时大约在特权信息上进行边缘化。我们的方法,电车(转移和边缘化),其开销时间很少,并且具有与不使用特权信息相同的测试时间成本。电车在CIFAR-10H,ImageNet和Civil评论基准测试方面表现出色。
translated by 谷歌翻译
黑匣子优化需要指定搜索空间以探索解决方案,例如解决方案。 D维紧凑空间,此选择对于以合理的预算获得最佳结果至关重要。不幸的是,在许多应用中确定高质量的搜索空间可能具有挑战性。例如,当在给出有限的预算时调整机器学习管道的机器学习管道时,必须在不包括潜在有前途的地区之间进行平衡,并将搜索空间保持足够小以易于发动。这项工作的目标是激励 - 通过调整深度神经网络的示例应用程序 - 预测预算条件的搜索空间质量的问题,以及提供基于应用于a的实用程序功能的简单评分方法概率响应表面模型,类似于贝叶斯优化。我们表明我们所呈现的方法可以在各种情况下计算有意义的预算条件分数。我们还提供实验证据,即精确的分数可用于构建和修剪搜索空间。最终,我们认为评分搜索空间应该成为深度学习实验工作流程中的标准实践。
translated by 谷歌翻译
最近,深度学习中的不确定性估计已成为提高安全至关重要应用的可靠性和鲁棒性的关键领域。尽管有许多提出的方法要么关注距离感知模型的不确定性,要么是分布式检测的不确定性,要么是针对分布校准的输入依赖性标签不确定性,但这两种类型的不确定性通常都是必要的。在这项工作中,我们提出了用于共同建模模型和数据不确定性的HETSNGP方法。我们表明,我们提出的模型在这两种类型的不确定性之间提供了有利的组合,因此在包括CIFAR-100C,ImagEnet-C和Imagenet-A在内的一些具有挑战性的分发数据集上优于基线方法。此外,我们提出了HETSNGP Ensemble,这是我们方法的结合版本,该版本还对网络参数的不确定性进行建模,并优于其他集合基线。
translated by 谷歌翻译
对不确定度和鲁棒性的高质量估计对于众多现实世界的应用来说至关重要,特别是对于深入学习,这是利用许多部署的ML系统。因此,比较改善这些估计的技术的能力对于研究和实践相似非常重要。然而,由于一系列原因,通常缺乏方法的竞争比较,包括:计算广泛调整的可用性,加入足够多的基线,以及用于再现性的具体文件。在本文中,我们介绍了不确定性的基线:在各种任务中的标准和最先进的深度学习方法的高质量实现。从本撰写中,集合跨越9项方法,每个方法都有至少5个度量。每个基线都是一个独立的实验管道,易于可重复使用和可伸缩的部件。我们的目标是提供具有新方法或应用的实验的即时出发点。此外,我们还提供模型检查点,实验输出为Python笔记本,以及用于比较结果的排行榜。代码在https://github.com/google/uncertainty-baselines。
translated by 谷歌翻译
模拟,低压电子产品在生产硅神经元(SINS)时表现出具有前所未有的能效水平。然而,他们固有的处理,电压和温度(PVT)变化和噪声长期被认为是开发有效神经态溶液的主要瓶颈。受到生物物理学的峰值传播研究的启发,我们证明了固有的噪音和变异性可以与模拟血管中可靠的尖峰传播共存,类似于生物神经元。我们通过展示三种不同相关类型的可靠事件传输:单秒尖传输,突发传输和半中心振荡器(HCO)网络的开关控制来说明该爆破神经元最近的神经晶模型。
translated by 谷歌翻译